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Some Aspects of Measurement Error in the
United States Objective Yield Survey I
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Abstract: In this paper we consider aspects
of measurement error in the United States
Objective Yield Survey for corn, which is
conducted by the United States Department
of Agriculture National Agriculture Statis-
tics Service. Various models are used to as-
sess measurement error in variables that ap-
pear in forecasting models for end-of-season
yield. Two major components of yield are
number of ears (per sample unit) and av-
erage grain weight per ear. Variables that
are used in forecasting number of ears are
simple counts, such as number of stalks, and

1. Introduction

The Objective Yield Survey is a series of
monthly measurements conducted by the
United States Department of Agriculture
(USDA) National Agricultural Statistics
Service (NASS) during the growing season
for the purpose of forecasting end-of-season
yield for crops such as corn, soybeans and
wheat. In this paper, we discuss models for
corn yield using data from the state ofIowa
during the years 1979 to 1985. Thorough
discussions of the survey design and cunent
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have very high reliability ratios. The relia-
bilities for variables that are used in fore-
casting grain weight, although adequate, are
substantially lower than those found for
number of ears. We also consider a model
for the reliability of yearly means, and dis-
cuss the effect of measurement error on end-
of'season forecasts.

Key words: Agricultural stahshcs; fore-
casting; reliability; strtlctural equations;
L1SREL.

forecast methods can be found in Francisco,
Fuller, and Fecso (1987), and Reiser, Fecso,
and Taylor (1987), respectively. An ab-
breviated description follows.

An early season estimate for the number
of acres planted or to be planted to corn is
calculated by NASS from data collected
during the June Enumerative Survey, using
a multistage stratified area sample. Objec-
tive Yield Surveys are conducted during the
months of July through November, using
fields that are subsampled from those visited
during the June Enumerative Survey. Even
though the data represent observations over
time, the number of time points per year is
small, and, in the past, the data have been
treated as essentially cross sectional. That is,
data from July are used to develop a July
forecasting model, data from August are
used to develop an August forecasting
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width of eight rows of corn,
field ij.

a constant for the transform-
ation to bushels per acre
103.714

1';j r.,/t",jKS,j' (I)

Y;, yield for field j in year i in
bushels per acre

Y.;; Average grain weight per ear,
for field j in year i, measured
on the ears in the selected units

Y"ij '" Number of ears of corn in the
selected units for field j in year i

During the growing season, the yield for a
selected field is calculated from expression
(I) using f!lrecasted values for grain weight
or number of ears, or both. Forecast models
use early season plant characteristics to
predict end-or-season yield in terms of num-
ber of ears and grain weight per ear. The
model for predicting number of ears at the
end of season uses number of stalks and
number of ears measured earlier in the sea-
son as predictors

result, the more mature corn at any given
time during the season will tend to have a
higher end-of-season yield. Therefore, the
concept of maturity class has been in-
troduced into forecasting end-of-season
yield.

Each field from which measurements are
taken is assigned to one of six maturity
classes based on characteristics of the corn
plants. for example, if the ears of corn have
no silks showing, then the corn is placed in
maturity class one. If silks are showing, but
lillie or no watery liquid is present in the
spiklets, the corn is at maturity stage two.
At maturity stage six, ears are firm and
solid, kernels are fully dented with no milk
present in most kernels; the shucks are dry.
but not beginning to open up. Finally. at
maturity stage seven, the corn is fully mat-
ure.

A different forecasting model has been
used for each maturity class that is available
within a month. because more mature plants
should have a model (i.e., different paramet-
er values) that reflects higher end-of-season
yield. The various models follow expres-
sions (I), (2), and (3), but the notation
would require two additional subscripts.
one for month and one for maturity class.
Some predictor variables are not available
in early maturity classes, and not all matur-

Yw "" ~ + P,X, + PZX6 + £ (3)

where

rIV average grain weight per ear,
at end of season

Xs average length over husk

X6 total length of five kernel rows.

where

Y" end-of-season number of ears

X, number of ears with kernels
(months 2 and 3 only)

X, number of stalks

X, number of stalks with ears

X, number of ears or ear shoots.

The model for grain weight uses two mea-
sures of ear length

Table I. A vai/ability of variables by month
(Number of observalions for years 1979-85 combined).

Variable Month
I 2 3 4

Number of stalks 702 12\2 1405 NANumber of stalks "lith ears 714 1212 1405 NANumber of ears or ear stalks 714 1212 1405 NANumber of ears with kernels NA 1196 1405 1405Average length over husk NA 1191 687 NATotal length five kernel rows NA 1192 697 NA

2.2. Maturity class

At any given point in the growing season,
there is considerable field to field variation
in the maturity of corn due to differences in
timing of spring planting, rainfall, etc.
Previous experience has indicated that corn
which is behind in maturity early in the
season does not catch up with the more
mature corn by the end of the season. As a

(2)

YN = Po + PIX, + p,X, + /l,X,

+ p,X, + &

on both number of ears and size of ears.
Although 240 units are selected for the sam-
ple each year, some units are lost to refusals
by owners, changes from intentions to plant
as stated in June, and damage to crops. As
a result, data are available each year on
approximately 200 fields, or 200 pairs of
units. for analysis purposes, each pair of
units is treated as a single observation.

End of season yield is calculated for a
. selected field using total number of ears and
average grain weight per ear

model, etc., and trends over months within·
years are not presently used. In this paper
we consider the use of panel models, which
incorporate aspects of both cross sectional
and time series data. Panel models are
heavily used in the social sciences, where the
emphasis is on the process of change over
time - i.e., which variables influence other
variables over time. Here, the use of panel
models has a different emphasis: The models
will be used for the purpose of identifying
measurement error in the predictor varia-
bles, and, ultimately, to assess the effect of
that measurement error on forecasts. This
information would be useful for determin-
ing at which stage of growth a measurement
provides useful in~o~a!i'<>..!1,.~.'f~(lIciel-
des in data coliectioncould·~iiiFved b!
elimination offield procc:dUret~hiclid()rt8t
substantially improve foreeasting llbility.'

In the following section we present a brief
overview of the forecasting methods
presently used by the USDA. Then, in Sec-
tion 3 we consider a single indicator panel
model for number of ears of corn, and in
Section 4 we consider a two-variable, two-
wave model for size of ears.

2. Present Methods

In Iowa, approximately 240 fields are select-
ed each year for the Objective Yield Survey.
Within each selected field, a pair of random-
ly located units is established for data collec-
tion. Each unit is two rows (of com) wide
and fifteen feet long. In early July (month
number one for the Objective Yield Survey),
one-half of the selected fields are visited, and
data pertaining to number of stalks in each
unit are collected. Starting in August
(month two), all selected fields are visited
monthly until the crop is either harvested or
fully mature. No fields are visited after
November (month five). During the visits in
months two through five, data are collected,

t. -
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1979 to 1985are shown by month and mat-
urity class in Tables 2 and 3. The USDA
actually calculates estimates for year i using
data from the preceding five years (i-I to
i-5). There are two competing principles
behind this choice for number of years on
which to base the estimates: to reduce sam-
pling error, we would like to use data from
as many years as possible; however, tech-
nological innovations may produce trends
that render data from past years obsolete.
So the USDA uses only the previous five
years as a compromise between these two
principles. The estimates shown in Tables 2
and 3, however, are based on seven years of
data.

Two aspects of the data that are not in-
corporated into the OLS estimation include
stratification of the samples on which the
data are collected. and secondly, year-to-
year effects on yield. Incorporating stratifi-
cation into the estimators would produce
only small dIfferences. because the design of

Month 2
P,

0.0338""
(0.0034)
0.0318"

(0.0034)
0.0372"

(0.0066)

Month 3
P,

0.033"
(0.012)
0.034"

(0.003)

Po
- 0.0635
(0.026)

-0.0634
(0.0273)

-0.1345"
(0.0511)

Po
- 0.1062
(0.085)

-0.0468
(0.0246)

n

69

573

120

442

n

591

2.3 Estimation

ity classes are present in every month. For
example. in month one (July) corn never
matures beyond maturity stage two. and so
there are only two models for number of
ears in month one. Also, none of the mta-
surements for size of corn ears, which are
the variables for predicting grain weight, are
available during either maturity stage one or
two, so in ,nonth one grain weight is fore-
cast by using the historical average from the
prevIous five years. The availability of
predictor variables by month is shown in
Table I.

Parameter estimates for the forecasting
models are established by using measure-
ments from several years preceding the cur-
rent forecast year. The dependent variable is
end-of-season yield. and the predictor varia-
bles are early season measurements, Estima-
tion is performed by ordinary least squares.
Parameter estimates based on data from

Table 3. OLS parameler eSlimates/or grain weight
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4

Maturity
stage

5

6

5

Maturity
stage

6

"p < 0.05
"p < 0.01
X, ='average length over husk
X2 = total length of five kernel rows
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for an application of a structural model with
measurement errors to survey data.

We .do not ~onsider separate models by
maturlty.c1ass m this panel model approach,
because II would not be feasible to do so.
The maturity stage for a field changes across
~he growing season, but the changes are
~rregular. Of the fields that are at stage two
m month two, some move to slage three at
month three, while others move to stage
four. Therefore, it would not be useful to
track a particular class of corn based on
month two observations. As discussed
below, the observations used with this
model are mostly from corn that was at
maturity stage two, three or four during
month two.

For, the model shown in Figure 2, the
followmg specifications are also required in
order to identify the model

A. = I

, (~
~, ~,'

AIt = 1.0 An = t.o j'n'"e&:J C£J QLJ
A t

A t tV(tl ) = 2.21 AV(t2) =2.21 V( t 3 ) = 2.21

euer. Fecso. Chua: Measurement Error i/1 Ohjective Yield Survey

Sample size= 620

~ = vector of equation errors.

~ =, vector of unobservable true
values for counts of number of
ears wilh kernels,

A. malrix of regression parameters
that relate observed values to
true values,

P matrix of regression parameters
for structural relationships
among the true values,

E vector of measurement errors,

Fig. 2. Single indicator model for number of ears with kernels

and

Expressions (4) and (5) specify relationships
among the variables, specifically the ability
to predict the next measurement from pre-
ceeding measurements, for the purpose of

. identifying'measurement error. That is. X
,contains a single variable, sometimes re-

ed to as a singl~ indicator, measured at
, different points of time. This model

~n studied by Hiese (1969), Wiley and
Y.<'910), Wiley (1913), and Jiireskog
'SOrbolJl (1989). See also Munck (1991)

(4)

(5)

ber of ears per sample unit, under the as-
sumption that error variance is constant
over time. A consequence of the rapid
growth of corn across a fairly short growing
season is that not all variables are available
in each month of the Objective Yield Sur-
vey, and of those available, some may not be
available on all units. The longest span of
time within each year over which newobser-
vations are available for any of the predictor
variables is, as shown in Table I, only three
months. An important variable for which
data are available from months two, three
and four is the cpunt of ears with evidence of
kernel formation.

A bivariate plot is shown for number of
ears with kernels in Figure I. The data in the
figures have been edited for lost units, des-
troyed fields, refusals, etc. An examination
of the plot shows that the counts of number
of stalks with kernels are quite stable from
month to month. Data for other variables
show that the count for number of stalks is
also very stable across months, but the
counts for number of stalks with ears and
number of ears or ear shoots are unstable
from month one to month two. These dif-
ferences in stability wi\l also be apparent in
the results from the formal model con-
sidered below.

A model with measurements at three
points in time is shown in Figure 2. We can
write the model as follows

x = A.~ + E

and

where

x = realized value of random vector
X, elements of which
correspond to counts for
number of ears with kernels at
months two, three, and four,
(August, September, October)
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the sample is such that the data are almost
self-weighting (Francisco, Fuller, and Fecso
1981), especially in Iowa where the stratifi-
cation is less distinct than elsewhere. Year-
to-year effects do appear to be present in the
data, primarily for grain weight, but incor-
porating them into the estimators also pro-
duces only small differences in the values of
the estimates. See Reiser, Fecso, and Taylor
(1981) for a nested error model of year-to-
year effects.

3. Measurement Error

An implicit assumption ofthe ordinary least
squares models presented above is that the
regressor variables, the X variables, are fixed
in repeated sampling. In reality, the X varia-
bles are stochastic, and may be subject to
measurement error. Unaccounted measure-
ment error in the regressors generally at-
tenuates the magnitude of the estimated re-
gression slopes, especially in smaller sam-
ples. Also, presence of measurement error
introduces the possibility of autocorrelated
error - i.e., any effect that introduces mea-
surement error of X at one point in time may
introduce correlated error in the measure-
ment in X at other times. If X measured at
a later point in time becomes the dependent
variable in the forecast model, as here, then
the equation error term may be correlated
with the regressors, a condition under which
least squares estimators are not consistent.
In the next section we examine measurement
error in variables representing number of
ears, and in the following section we examine
measurement error in variables representing
grain weight.

4. Panel Model for Number of Ears

The model presented in this section is a
single indicator panel model that will allow
us to identify the measurement error in
some of the predictors for the count ofnum-
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tiJiecl implies that a unique value can be
obtained for cach parameter, but there are
no degrees of freedom left for a " test of fit."
It is not, however. a liability for a model to
be just identified; we can interpret the mag-
nitude,of the parameter estimates, and we
often test that parameters are equal to zero.
We have done interpretations of and tests
on parameters here and we found that the
measurement error variance. although
small, is signiticamly different from zero.

We lit this simple model to variables that
are measured in months one, two and three,
instead of months two. three and four,
which are the months for number of ears
with kernels. For the count of number of
stalks. the reliability ratio had the value
0.998 in each of the three months. However,
the model was not successful for the mea-
surement of stalks with ears or for the mea-
surement of ears/ear shools. For each of
these variables, the estimated error variance
was negative by a substantial amount. We
interpret this resull as an indication that the
assumption of COnstant error variance, and
hence the model, is not appropriate. Biva-
riate plots show that number of ears with
kernels and number of stalks are quite stable
from month to month. Number of ears and
number of stalks with ears, on the other
hand. are very unstable early in the season,
as seen by comparing month one to month
two.

lt is clear that the larger measurement
errors at month one in the counts of stalks
wilh ears and ears or ear shoots are not
errors of counting. Obviously, many ears
that are counted at months two and three
have simply not emerged yet at month one.
Also. ear shoots that begin to form may
ultimately die off. The model used in this
section allows for change in the number
of ears at each sample location. bur rhe
change must be reliable. i.e., predictable. So.
there appears to be a period of inherent

RCISt''-. F{'('.\"(}. ("hUll: A4ea.\'Un'IIIelJl ['rror III ()/~/t'("/11'" belt! ,')'ur1'(')'

where'" and e, are diagonal (i.e., all errors
are uncorrelated), then we will be able to
perform a likelihood ratio test of this null
hypothesis by using a general purpose com-
puter package such as LlSR El (Joreskog
and Sorbom 1989), or USCOMP (Muthen
1988). Under the constraint that these mea-
surement error variances are equal to zero,
the model tits poorly (p <: 0.05), indicating
that the variances are significantly different
from zero. This likelihood ratio test requires
an assumption that sampled fields were
selected by simple random sampling, not
complex sampling which might involve stra-
tification or clustering. As discussed earlier.
the "design effect" of the complex sample
used to collect this data is essentially equal
to 1.0, so the assumption of simple random
sampling is not unreasonable. Methods for
covariance structure models that do not as-
sume simple random sampling are now be-
coming available. See Satorra (1991).

If there were no measurement error. the
emergence and persistence of number of
'ears with kernels across three measurements
made during ihe growing season would con-
form exactly to a Markov simplex process.
Instead, because of the presence of measure-
ment error, the growth of the ears follows a
quasi-Markov process. In the quasi-
Markov process, the true value for number
of ears with kernels at month i, given the
true number at month i-I, is independent of
the true number at any other month. (An-
derson 1959; Joreskog 1970a.) The variance
of the disturbance term in the structural
equations changes considerably from month
two (l/Iu =1 32.60) to month three
(",.•.•= 1.0I), so the process of growth of
ears is non-stationary.

As mentioned earlier, the model shown in
:Figure 2 is/ust identified, a term that refers
lo the,relationship between the parameters

the information in the variance-covari-
llIatrix,implied by the model. JIm iclell-

(7)

0.991

0.990

0.990

pi

p2 = V(~)/[V(~) + V(e)J.

Under this definition, the reliability ratio of
the measurements at times one. two and
three are as follows

Although it is not necessarily the case that
the reliabilities be equal across time points,
it is clear that number of ears with kernels is
measured virtually without error at months
two, three and four. This result is not sur-
prising, given the relationships shown in
Figures la and lb. Since these measurement
error variances are so small, it is natural to
test the null hypothesis that they are equal
to zero. rf we adopt the assumption that

to-year variation is present in these data.
The most likely year-to-year differences
would be in the means. Although there is no
model on the means in this analysis. dif-
ferent means might imply that covariances
among the variables differ over years. In
such a case. separate models could be esti-
mated for several years simultaneously. as
will be done in a later section of the paper.
Here there is no evidence that covariances
differ across years, and a single model will
be retained.

Estimates for model parameters are given
in Figure 2, wh~re it is apparent that the
magnitude of the measurement error van·
ance. at 2.21, is very small. The reliability
ratio, p', is defined as the ratio of variance
of ~he true measure to the total variance

A A
Cov (X,. X,)/Cov(X" X2)

A _

V(XJ - [Cov(Xh X,)/IlJ2)

V(X,) - V(e)
A _

Cov(X" X,)/V(~,)

V(X,) A _
- [~lICov(X" Xl) + V(e))

V(X,)
A •

- 1~12Cov(X" Xl) + V(e)]

Under the assumption of multivariate nor-
mality, these expressions are maximum
likelihood estimators.

Six hundred and twenty observations are
used in the analysis presented below, and
they constitute a little less than one-half of
the 1440 fields selected for observation from
1979 to 1985. Approximately 200 fields were
lost to refusals, damage to crop, etc. The
other 600 fields are not included in the anal-
ysis because the model requires month four
observations. and the crop was already har-
vested by the time the USDA enumerator
visited the field. Therefore. the observations
used for this analysis are from fields that
were slow to mature, which implies a low
maturity stage at month two. In the pre-
sentation of our results. we will comment on
results that might have been different with
corn that would have been faster to mature.

Because data from seven years were com-
bined lO obtain the sample size o~620, year-

and

V(e,) = V(e2) = VIE,) = VIE).

The last expression states the assumption
that the measurement error variances are
constant across time.

Using these specifications. the model is
just identified, and the parameter estimat~s
can be calculated directly from the covan-
ance matrix, following Wiley and Wiley
(1970)
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~, = ~I

X. average length of five kernel rows
at month three

X, average length over husk at
month three

X, = average length over husk at
month two

X, average length of five kernel rows
at month two

~, true (average) length of corn
cobs at month three.

~I true (average) length of corn cobs
at month two

measures of the same underlying variable.
Neither of the variables for grain weight

are measured for three consecutive months,
so the model given in the previous section
cannot be used. However, since both varia-
bles are available in months two and three,
the two-variable two-wave model shown in
Figure 5 can be used instead. The general
form of this model is the same as the form of
the model in equations (4) and (5), namely

x = A.~ + E,

and

but now

then all parameters are identifiable in terms

Identifica'tion conditions for this model are
discussed by Wiley (1973). If we impose
additional restrictions,

• For Ihe analysis in this section. we use USDA variable
PI9 divided by 5.0, to give average length over the five
kernel rows. This transfonnation was done so that the
metries of the two X variables would be approximately
in the lame units.
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unreliability in the timing of emergence of
ears.

5. A Two-Variable, Two-Wave Model for
Size of Ears

Two variables are used as predictors of
grain weight: average length over husk (X,),
and total length of five kernel rows (X,).
Bivariate plots of these variables across
months are shown in Figure 3 and 4, where
it appears that length of kernel row contains
more error. The size of an ear of corn
should, of course, be represented by at least
length and diameter (or circumference), as if
its shape were a cylinder. Using simple
geometric shapes for modeling has worked
well for fruit crops (Fecso (975). Recently
Bigsby (1989) found that including diameter
measures for corn reduced the mean
squared error by 30% to 50% from models
with only length measures. However, there
are no measures of diameter or circumfer-
ence available in this data, thus we will ex-
amine only measures of length.'

Neither of the X variables is an ideal mea-
surement: we would like to have a measure-
ment of grain weight at each month of the
growing season, but obtaining it would des-
troy the ear being measured. So, the length
of the cob over the husk is measured in-
stead. To get a measurement that is closer to
the actual grain weight, the length of the
kernel row is measured for five ears. But
again, since this measurement destroys the
ear in terms of future growth, it is done on
five ears that are outside the unit, and on
plants that are different from those for
which grain weight will be determined at the
end of the season. Thus, there may be sub·
stantial error in both manifest variables as
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the actual covariance matrix), the expres-
sion given above produces ten simultaneous
equations in nine unknown parameters.
From these simultaneous equations, it fol-
lows that A" = o,,/OIJ and also that
A" = 0'4/0'4' Hence the model implies that

Given ten equations and nine unknowns,

there is one degree of freedom to test this
constraint.

Ii =0.946

t V(£J)~~.180 Y .~ V(E}=I.II?

~(E2) = 1.428 ~tAf' 0.514

G 2 = 1.05. df=2

S_I. Size= 619

~(C 1)=0·644

( 'I,V"
sym

+~,J
I

Ai,'1'"A"A"'I',,
Pi,A;,'I'" + A;,'I'"

+ 0,
A"A"p" '1"1 A"Al,p"'I',,
A"A4IP"'I',, A"A4' P" '1'" Pi, 1..4,A)I + 1..4,All '1'" Pi,A~,'I'"

I\O.w" h'c'\O, (. IIlIa. AJ<,a.Wfc'tIIl'llI J~rrOI 1/1 ()/~/('dJI'(' ) 1('/(1 ,)un'(')'

oflhe covariance matrix among the Xvaria-
bles.

We let ro represent a vector containing all
parameters of the model, i.e., ro contains the
elements of p, A, and the non-redundant
elements ofCll, '1', and 0,. Then we can refer
to 1:«(0) as the covariance matrix implied by
the specified model. In this case

1:«(1) = A(/- 8)-''1'(1 - 8)-' A' + 0,

Fig. 5. Two-variable. two-wave model for size of ears

Setting 1:(ro) = 1:" (i.e., setting the covari-
ance matrix implied by the model equal to

..•.
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1979 1981 1982 1985
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e) Estimate (s.e.)
9,,, 0.209 (0.040) 0.160 (0.065) 0.183 (0.060) 0.043 (0.057)9,,, 1.258 (0.152) 1.889 (0.251) 0.867 (0.103) 1.416 (0.187)9'H 0.209 (0.040) 0.099 (0.049) 0.136 (0.047) 0.163 (0.049)9'44 '1.105 (0.134) 1.103 (0.147) 0.990 (0.117) 1.002 (0.133)9,., 0.434 (0.108) 0.729 (0.152) 0.109 (0.078) 0.568 (0.007)9,,, 0.022 (0.006) 0.013 (0.008) 0.0004 (0.004) 0.023 (0.007)9,,. 0.018' (0.006) 0.022 (0.006) 0.013 (0.005) 0.013 (0.005)'1'13(=9,))) 0.004 (0.0005) 0.004 (0.0005) 0.003 (0.0005) 0.003 (0.0005)

G' = 27.08
df= 24

Table 4b. Parameter estimates for two-
variable, two-wave model C

Jhl

(0.050)
(0.055)
(0.055)
(0.054)
(0.050)
(0.028)
(0.083)
(0.028)
(0.066)
(0.057)

(0.081)
(0.004)
(0.060)
(0.060)
(0.060)
(0.050)

Model C
1979, 1981
1982, 1985

Estimate (s.e.)

G' = 1.05
df= 2

0.909
0.043
0.505
0.505
0.529
0.095

Model B
Estimate (s.e.)

0.946
0.608
0.608
0.644
0.043
0.180
1.428
0.180
1.117
0.514

Table 4a. Parameter estimates for two-
variable, two-wave model B (Estimates for
model A not shown)

Parameter

Parameter

R('/,\'('r, J'<-'CH/, Cllllo. A-JeasurClIll'lJl 1:.1'1'01' ", ()/~J('lIH'C } Idd Survl')'

p;, p'(X,) 0.73

p;, p'(X,) 0.16

p;s p'(Xs) 0.78

p~. p'(.\:4) 0.16.
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such a parameter value is unacceptable, the
model is in need of modification, and the
equality constraints provide appropriate
modifications.

As is evident from Table 4, the amount of
error in the measurement of lengths is large.
These error variances correspond to the fol-
lowing reliabilities

Clearly, average length over husk (X" Xs)
appears to be the preferable measure. In
assessing these results, it is important to
keep in mind that measurement error en-
compasses not only errors that literally
occur with a tape measure in the field, but
also components of the measured variable
that are unrelated to the true value. That is,
there appears to be some systematic vari-
ance in length of kernel rows (X, and X.)
that is unrelated to average length over husk
(X, and Xs), and may be unrelated to end-
of-season grain weight. Psychometricians
use the term parallel measurements for two
variables if their latent variables are linearly
dependent and their measurement errors are
independent, with equal variances. Clearly,
length of kernel rows and average length
over husk are not parallel measurements.

An important difference between these
two variables is that length of kernel rows,
since it is a destructive measure, is taken on
the first five ears outside the unit. Also, since
the ears used for the measurement in month
two are destroyed, length of kernel row has
to be measured on five different ears in
month three. The ear-to-ear variability af-
feets its reliability significantly, vis-a-vis
length over husk which is measured inside
the unit.
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Moment estimates of the parameters may
be calculated directly from the sample co-
variance matrix, but if we adopt the assump-
tions discussed in Section 4, then maximum
likelihood estimates, as well as estimated
asymptotic standard errors, may be ob-
tained from L1SREL (Joreskog and SOrbom
1989) or L1SCOMP (Muthen 1988). Under
th~se assumptions, we will also be able to
perform a likelihood ratio test of the con-
straint given in expression (8). Statistical
properties of this model are well known
(Joreskog I970b).

The model as given above shows a poor fit
to the data, since the likelihood ratio statis-
tic is 98.78 on one degree of freedom. Such
a poor fit is usually taken as an indication
that correlation of errors across occasions is
present (Kessler and Greenberg 1981). In
addition, residuals given by the LlSREL
program suggest that the covariance be-
tween length of kernel row at month two
and length of kernel row at month three
(cr , .• ) is not very well replicated under the
model. Lagrange multiplier statistics' pro-
duced by LISREL suggest that setting ele-
ment 2,4 in 9, as a free parameter to be
estimated would dramatically improve the
fit of the model. (In this first model, which
we refer to as model A, it is constrained to
zero by default.)

In Table 4, results for the model with this
covariance as a free parameter 8R shown
under model B. These results are also shown
in Figure 5. Model B also contains equality
constraints on other parameters, namely,
A" = A., and 9,1,1 = e,l.)' These are rea-
sonable constraints to include in the model,
and in this case they appear to rclIeet the
data accurately, since the model fits well
with a likelihood ratio statistic ofG' = 1.05
on two degrees of freedom. The two con-
straints given above also serve another pur-
pose: without them '1'" is slightly negative
(i.e., 'outside the parameter space). Since
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Table 4c. Reliability ratios by year

X, X, X, X.

1979 0.703 0.078 0.746 0.056
1981 0.776 O.oJ5 0.852 0.103
1982 0.711 0.123 0.799 0.095

. 1985 0.936 0.169 0.793 0.211

Estimales for 1979

estimates for the ~ parameters from struc-
tural equations in model C to estimates
under two other conditions: (I) measure-
ment error fixed at zero, and, (2) measure-
ment error present, but error covariances
fixed at zero. Estimates for ~ are inllated
when the measurement errors are fixed
at zero: IJ" = 0.930 and IJ" = 0.056, as
compared with the values of 0.909 and
0.043 under model C. When measurement
errors are present, but error covariances are
fixed at zero, IJ" and p" had estimates of
1.111 and 0.050, respectively. As can be seen
from these numbers, ignoring measurement
error may cause the estimated regression
slope that would be used in a forecast
to be inllated by as much as 30%. Even
though measurement error may have a sub-
stantial effect on the parameter estimate
that would be used in forecasting, there are
some conditions under which the OLS esti-
mate would still be optimal in forecasting.

Reiser. Fecso. Ch",,: Mcasurc'II/CIII "'fror /1/ Oh,{'ctn", l"te'" S/I/"I'n

Fig. 6. Model including grain weighl (Y)

1982, where e••, is much smaller than in the
other years. Changes in error variances
across years imply changes in reliability ra·
tios, which are shown by year in Table 4c.
Average length over husk in month three
appears to be the most reliable measure-
ment.

Model C can be used to assess the effect of
measurement error on estimates that might
be used in forecasting end-of-season grain
weight. In model C, not only is measure-
ment error present, but we were also able to
estimate a covariance between the distur-
bance term for the structural equation and
the measure'jllent error term for length of
kernel row. The presence of measurement
error and correlated errors may cause ordin-
aryleast squaresl estimators, which are
based on the assumption of no measure-
ment error to be biased or inconsistent. We
can ihvestigate the effect of measurement"
error and correlated errors by comparing

)ouft/"I of Ujficial Slalistics

e,1] is actually equal to 0.0. An independent
replicated measurement of the observation
on each ear would provide the added infor-
mation to effectively estimate 9"" but such
measurements are simply not available in
this data, and would in general be expensive
to obtain. We discuss another approach for
estimating this covariance in Section 6.

One reason for examining measurement
error is to assess the effect on parameter
estimates used in forecasting models dis.
cussed in Section 2. One way to approach
this question is to introduce the end.of.
season grain weight as a variable into the
panel model, as iliown in Figure 6. We refer
to the model including end·of-season grain
weight as model C. Since end-of-season
grain weight has only one measurement, we
must assume that it is measured without
error, or equivalently, that the measurement
error is absorbed into the disturbance term.

In estimating model C, we also calculated
covariance matrices for each year separate-
ly, and found evidence that these within-
year covariance matrices are not equal. For
the years 1979, 1981, 1982, and 1985, we
were able to estimate a two-wave two vari-
able panel model using the separate within-
year covariance matrices simultaneously.
The method consists of simultaneously fit-
ting separate models for each year, with the
possibility of constraints on parameters
across years. A single test of fit can be per-
formed for all years. When all parameters
were constrained to equality across years,
the model showed a poor fit (G' = 84.34,
df = 47). If we allowed error variances and
covariances to be free across years, then the
fit was satisfactory (G' = 26.07, df = 23).
For three years, 1980, 1983 and 1984, there
were too few observations to include in the
simultaneous estimation of separate models.

Parameter estimates are shown by year in
Table 4b under model C, and in Figure 6.
The largest difference across years occurs in

Results for this model were obtained
using data from the second and third
months of the Objective Yield Survey. One
aspect of the data that should be kept in
mind is that month three data regarding
length of the cob are available only. for the
plants that were the slowest to mature. If the
crop was already mature at month three,
which was the case for just over one half of
the sample locations, the corn would have
been harvested and no measurements would
have been taken regarding length of the
cobs.

In model B, the covariance between the
measurement errors in length over husk
from month one to month two (e,o) is fixed
at 0.0 by default. Normally, this parameter
is not identified in the two-wave, two-vari-
able model. When the equality constraints
A" = A" and e,1I = e,]] are included in
the model, then e,o is identifiable and may
be specified in L1SREL as a free parameter
to be estimated. Our attempts to estimate
e,,, gave results that indicate severe mul.
ticolinearity in the sampling distribution of
the parameter estimators. These results in-
cluded difficulties in convergence of the
numerical solution and huge standard
errors for estimates. In such a result, the
model is sometimes said to be over.
parameterized - i.e., there is not enough
information in the data to effectively esti.
mate all of the parameters included in the
model. So' although model B fits very well
when e,,, is fixed at 0.0, we do not interpret
that resOItas very com"elling evidence that
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plies that there is only a single parameter to
be estimated (either Il, or p,. hut not both).
and the value of the estimate is identical to
p)! of model C in Section 5.

From these results. it is evident that the
covariances among the measuremelll error
terms within a time point play an important
role in determining a forecasting model. Un-
fortunately, the estimation of these cova-
riances within model C required additional
indicators at each time point that were not
available. In order to obtain values for all of
the error covariances. we used 3n entirely
different method for identifying the error
covariance matrix, following an example in
Fuller (1987. p. 131). In this method. using
all seven years of data. the error covariance
matrix was estimated by pooling the seven
sample covariance matrices for the variation
a'mong units within years. and then dividing
by no, where

p'(X,) 0.914

represents the number of ohservations per
year (See Snedecor and Cochran 1967. p.
290). That is. the measurement error covari-
ance matrix was equated with the covari-
ance matrix of the sampling distribution of
the yearly meal/s of the five variables Y, X"
X!, Xl' and X,. where X,. X,. X" X, were
defined in Section 4, and Y is end-of-season
grain weight.

Table 5a gives the sample covariance ma-
trix for the five variables calculated from
yearly means on seven observations (i.e.,
seven years), and Table 5b gives the error
covariance matrix based on the pooled with-
in year covariance matrix as described
above. The variances from the two matrices
were used to calculate the following reliabil-
ity ratios

where 0 = diag (5", S,!, ... S,p) and A"
contains ratios of error variance to total
variance for the independent variahles on
the diagonal and the corresponding covari-
ance ratios as off diagonal elements.

If the two predictor variables arc con-
generic measures, which means that they are
representations of the same underlying vari-
able, then the true values have unit correla-
tion. In that case, the matrix of sums of
squares and cross products for the true
value will be singular. With two predictor
variables at a single point in time, the
predictors are congeneric measures if and
only if P, '" p, and the measurement error
variances are uncorrelated. Given the suc-
cessful model for congeneric measures in the
preceeding section,.,it comes as no surprise
that if we use the same data as in Section 5
as well as error ratios calculated from model
C, then the test of singularity is failed for all
months and maturity codes. This result im-

IX'X - A(n - I)OA"OI = 0 (12)

simplify notation, the additional subscripts
are not used here.

When variables are included in the model
from only one month, there are only two
predictors. and so the measurement error
variances or reliability ratios must be as-
sumed known. Estimation of the parameters
for this forecasting model could be allemp-
ted by using the generalized least squares
estimator given by Fuller (1987) along with
the reliabilities that are implied by model C.
Such estimates may be calculated with either
the Super Carp (Hidiroglou. Fuller. and
Hickman 1980) or EV Carp (Schnell and
Fuller 1987) programs. In order to use this
estimator, we must assume that the matrix
of sums of squares and cross products for
the true values. f" is positive definite. The
test of singularity is performed on the smal-
lest root of

(9)

(10)

(11 )

~ + t

E{(e, t)'(e, I:)} = (C1~ 1:•.•).
1:~.E"

where

and

x = vector of observed values for
predictor variables, measured with
error, from a single month

y realize.d value for end-of-season
yield

The covariance matrix of the error terms has
the following structure

1; vector of true values for predictor
variables

to equation (2) or (3) and lhat also inclUde
components for measurement error as fol-
lows

e equation error

I: vector of measurement errors.

We envision that this model would be used
with predictors from only one month at a
time. 'Expression (10) specifies that each
predictor variable is associated with a
unique latent variable which represents the
true value. In Section 5, expression (5) pro-
vided two predictor variables associated
with each latent variable. When there are
two predictor variables at just one time
point, the two approaches are equivalent
under the condition that PI :; P, from P in
expression (10). Equivalences between the
models will be discussed in more detail
below. As for the models considered in Sec-
tion 2, separate values for llo and p could be
used for each maturity class within month,
and the model could be so subscripted. To

This topic will be discussed more fully in
Section 7.

In the next section, we consider an alter-
native approach that will"allow us to esti-
mate the entire covariance matrix among
the measurement error terms. A model
which contains the entire error covariance
matrix will be more realistic, and may give
additional insight into the effect of measure-
ment error on the estimation of parameters
that would be used in forecasting. With the
two-wave panel model used in this section,
only one error covariance across time can be
estimated, unless additional indicators are
available at each time point. Since the ad·
ditional measurements are not available, we
consider an approach that equates measure·
ment error variance to within year sampling
variance.

As mentioned above, for 1980, 1983 and
1984, there were too few observations to
estimate separate models. These were also
the years of low end-of·season yield. In
order for an observation to be included in
this analysis, data had to be available for
both months two (August) and three (Sep'
tember). For the three years with too few
observations, harvests in most fields must
have been completed unusually early, so
that by September I, there were only a few
sample fields left in which forecast measure·
ments could be taken. This serves as are·
minder that even in the other years when
more observations were available. the mea-
surements used to estimate these panel
models were obtained from the slower grow-
ing plants, because only measurements of
at-harvest yield were collected from the fas-
ter growing plants during the September
survey. Of course, forecasts are not required
for plants on which the actual values can be
obtained.

6. Measurement Error in Yearly Means

We may specify equations that correspond,
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Table 50. Covariance matrix among yearly
means, df '" 6

X, X, Xl X. y

X, 0.103
X, 0.009 0.089
Xl 0.117 0.097 0.149
X. 0.098 0.088 0.114 0.099
y 0.013 0.009 0.015 0.012 0.002

Table 5b. Error covariance matrix based on the pooled within year I'ariation

These values are considerably higher than
the estimates obtained from the panel model
in Section 5, especially for length of kernel
row (X,. X,). The values follow from the
definition of reliability given earlier; the dif-
ference between these values and the estima-
tes from Section 5 is due to different defini-
tions of error variance and true variance. In
the panel model. the estimate of true vari-
ance is based essentially on correlation
across months of the growing season.
whereas for the yearly means true variance
is a function of sample size. Given the large
samples, the yearly means have higher relia-
bilities than the monthly measurements.~

.Ii.!

Grain weight is inherently more difficult
to measure than number of ears. Because
the ear of corn must be destroyed to make
the grain weight measurement. proxy varia-
bles must be used during the Objective Yield
Surveys. which introduces measurement
error that makes a large contribution to the
error in forecasting end-of-season yield. In-
dicators for size of ear were studied over
months two and three. when month-to-
month magnitudes are fairly stable. Length
over cob. measured on the same plants over
time. appears to have a reasonably high
reliability ratio of 0.76. On the other hand.
length of kernel row. which is' lIIelI_d
outside the unit. has a much lower reliabil-
ity. The reliability of this variable could be'"
substantially improved by increasing Uie
number of ears measured for length outside-
lhe sampling unit in the field. This increase
would entail little cost. since the size of the
sample unit would not have to be increased.
and no additional laboratory work would
be required. The larger sample of ears would
lead to a higher reliability. a reduction in the
standard error for the estimated regression
coefficient. and a reduction in the standard
error of the forecast.

In this paper we have used statistical
models to assess measurement error in the
Objective Yield Survey. Error in the mea-
surement of predictor variables reduces pre-
cision of the prediction. and may result in an
estimator that is not consistent. When the
purpose of a model is prediction. as in the
Objective Yield Survey. the OLS estimator
may still be optimal. If the prediction is for
a random element from the same distribution
as the other X and Y values. and the varia-
bles are multivariate normal. then the opti-
mal prediction can be obtained by the ordin-
ary least squares estimator even in the pres-
ence of non-zero covariance between the
equation error and the measurement error.
If these conditions are not met, then it
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7. Discussion and Conclusions

Measurement error in counts for number of
ears and number of stalks appears to be
minimal during the Objective Yield Survey.
In month one. the number or ears can be
predicted well from number of stalks. and
since number of stalks is measured with a
high reliability. number of ears can be pred-
icted with a low error even at month one. In
the second land third months, counts for
number of ears are very reliable. and the
forecast for number of ears can be made
with even lower erlor. Measurement error in
the counts for number of ears is not an
important aspect of the Objective Yield Sur-
vey for corn. Counting may be more subject
to error w,ith other crops such as soybeans.

eters of the errors-in-variables model in ex-
pressions (9) and (10). Unfortunately.
length over husk and length of kernel row
are highly colinear, and with only seven
observations. we cannot reject the null hy-
pothesis that the matrix of sum of squares
and cross products for the true values is
singular. Therefore. it would not be appro-
priate to rely on the estimated values ob-
tained for the model including both these
variables. If we use only one predictor vari-
able. and choosing length over husk at
month three (Xl) to be that variable, the
results appear reasonable: P, = 0.1038 with
measurement errors equal to zero and
P, = 0.1065 using the appropriate error
variances from Table 5. Both values are
significantly different from zero, with
p < .0 I. So. the effect of measurement error
is very modest here. but the magnitude of
the estimated regression slope is approxim-
ately double the value obtained with the
panel model approach. The difference is due
to the focus on yearly means as units of
analysis rather than measurements from in-
dividual fields.

Y

0.00006

X.

0.0152
0.0004

The matrix in Table 5b contains values
for the error covariances that were not iden-
tified in the panel model of Section 5. From
these values. it appears that the error cor-
relation between X, and X,. at 0.72. is even
larger than the error correia tion between X,
and X •• which is 0.53. The other error cor-
relations are also fairly large. These results
for error correlations represent an addition
to the panel' model results in Section 5. As
stated before. there is not enough informa-
tion in the two-wave two-variable panel
model to estimate all error covariances. and
so some of them were fixed at zero by de-
fault. The method used in this section shows
that all error covariances are considerably
different from zero.

Using the seven observations for yearly
means, and the error covariances in Table 5,
we can again attempt to use Fuller's estima-
tor to obtain sample values for the param"

X, Xl

0.0190
0.0038 0.0086
0.0090 0.0034
0.0004 0.0003

I ( En')no = a=J N - N = 82.44

(See Snedecor and Cochran. 1967. p. 290)

df = 595

0.0089
0.0038
0.0063
0.0032
0.0003

p'(X,) 0.786

p'(Xl) 0.943

p'(X.) 0.846

p'(Y) 0.971.

X,
X,
X,
X,
Y
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would be desirable to give a prediction
which would be conditional on the true
value of the predictor. (See. Fuller 1987, pp.
74-79.)

The most important condition to consider
for the USDA forecasts is whether or not
measurements taken from fields for predic-
tion in the current year can be considered to
be random elements from the same distribu-
tion as the measurements used to establish
forecasting parameter estimates. Fields in a
current year are clearly sampled from the
same (or essentially the same) population as
in past years, but sampling with respect to
time must also be considered. Years chosen
for establishing the model as well as the
current forecast year are not selected ran-
domly, and might even be represented by a
fixed effect. Moreover, growing conditions
in the current forecast year may differ sub-
stantially from the conditions in the years
used to establish the model. Extended cold
weather or severe lack of rain does not
usually occur during a growing season, but
when it does, the measurements from that
year cannot be considered to have been
taken from the same distribution as mea-
surements from the previous years, unless
they too contained unusual growing con-
ditions. Thus, using the structural model
given in expressions (9) and (10) as the
prediction equation should be considered by
the USDA.

Ultimately the USDA is interested in
predicting the yearly total harvest, which
can be calculated directly from the yearly
mean. Results in Section 6 showed that mea-
surement error would have a very small ef-
fect on a direct prediction of the yearly
mean. However, the USDA does not use a
direct prediction. Instead, a forecast is made
for each sample field, and then an average is
taken. At the field level, measurement error
has a substantial effect on estimated par-
ameters. in the forecasting model..

JOl/mol oj OJ/H'wl Slal/sl/es

Unfortunately, a complete set of pa-
rameter estimates for the true measurement
error model at the field level is not available
from results in this paper, because ,there is
not enough infonnation in a two-variable
two-wave model to estimate the entire co·
variance matrix for the measurement error
tenns. While a forecasting model based on
results in Section 5 could be used on an
interim basis, a more thorough assessment

. of measurement error in grain weight is
needed, and it would require additional in-
dicators of length of cob, so that the appro-
priate error covariance matrix could be esti-
mated. Measurements of diameter or cir-
cumference of the ear of corn should also be
included in such a study.
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